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We present the lattice Boltzmann equation (LBE) with multiple relaxation times (MRT) to
simulate pressure-driven gaseous flow in a long microchannel. We obtain analytic solu-
tions of the MRT-LBE with various boundary conditions for the incompressible Poiseuille
flow with its walls aligned with a lattice axis. The analytical solutions are used to realize
the Dirichlet boundary conditions in the LBE. We use the first-order slip boundary condi-
tions at the walls and consistent pressure boundary conditions at both ends of the long
microchannel. We validate the LBE results using the compressible Navier–Stokes (NS)
equations with a first-order slip velocity, the information-preservation direct simulation
Monte Carlo (IP-DSMC) and DSMC methods. As expected, the LBE results agree very well
with IP-DSMC and DSMC results in the slip velocity regime, but deviate significantly from
IP-DSMC and DSMC results in the transition-flow regime in part due to the inadequacy of
the slip velocity model, while still agreeing very well with the slip NS results. Possible
extensions of the LBE for transition flows are discussed.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The rapidly growing interest in micro-electro-mechanical systems (MEMS) has also stimulated a great interest in mod-
eling and simulation methods for microflows [1,2]. In particular, the gaseous flow through a long microchannel has become
an important test case for various numerical methods, because of its important applications in microdevices [2]. The physics
of this flow has been well studied by now [2–4]. Even at very low Mach number, gaseous flows are often compressible in
microdevices because of substantial pressure drops and density variations caused by viscous effects. In a long, constant-area
microchannel, the degree of rarefaction and the Mach number increase along the channel, thus all Knudsen number regimes
may be encountered, and the pressure drop becomes nonlinear. In essence, compressibility and rarefaction are the key char-
acteristics of gaseous flows through a long microchannel [3].

Among various methods, the lattice Boltzmann equation (LBE) has been advocated as an effective means for microflows
simulations because of its kinetic origin [5–20]. Based on a theoretical analysis and numerical evidence, we justify the appli-
cation of the LBE method for simulation of microflows in the slip flow regime. We will focus our effort on pressure-driven
flows through a long microchannel.

Numerous LBE studies have been devoted to pressure-driven microchannel flows [5–20]. Several interesting observations
can be made. First of all, the lattice Bhatnagar-Gross-Krook (LBGK) model [22,21] is exclusively used in these works, although
it is well known that the boundary conditions in the LBGK models depend on the viscosity [23,24] and that the so-called ‘‘slip
velocity” observed in the LBGK models with bounce-back boundary conditions is a numerical artifact [25]. Second, regardless
. All rights reserved.
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of the value of the Knudsen number Kn, the profile of the streamwise velocity u is a linear superposition of a perfect parabola
and a constant slip velocity Us at boundaries, and the magnitude of Us depends on Kn. This is inconsistent with the solutions
of the full or linearized Boltzmann equations. It is thus no surprise that the LBGK model yields qualitatively incorrect results
[5] for microchannel flow at the Knudsen number Kn ¼ 0:194 [26]. Because numerical analysis and convergence studies have
not been shown in the LBE studies [5–20], nor have sufficient validation and verification been carried out, the validity of the
LBE microflow modeling is in question [26].

In this work we intend to demonstrate the capability of the LBE method for microflow simulations. Through both theo-
retical analysis and numerical simulation, we will show that the LBE method can simulate microchannel flow. In particular,
we obtain the analytic solutions of the LBE with various fluid–solid boundary conditions for the incompressible Poiseuille
flow with its walls parallel to a lattice axis. Our analysis elucidates that the erroneous results in the previous LBE simulations
are mostly due to the deficiencies in the LBGK model coupled with the bounce-back boundary conditions [25,24]. We will
demonstrate that the LBE models with multiple relaxation times (MRT) [27–29] can overcome certain inconsistencies in the
LBGK models with bounce-back boundary conditions. Although the present study only deals with the simple case of the two-
dimensional Poiseuille flow with its walls aligned with a lattice axis, the boundary conditions for geometries with arbitrary
curvatures have been proposed [31,23,24,30].

The remaining part of this paper includes a summary of known results for gaseous microchannel flow in Section 2; a brief
exposition of the LBE method in Section 3; the analytic solutions of the LBE for the Poiseuille flow with various boundary
conditions in Section 4; a description of boundary conditions used in the LBE simulations in Section 5; the numerical results
for microchannel flow, compared with the slip Navier–Stokes solution, the DSMC and IP-DSMC data up to Kn ¼ 0:388 in Sec-
tion 6; and a concluding discussion in Section 7.

2. Theory of pressure-driven flow through a long microchannel

The two-dimensional isothermal flow through microchannels with low Mach number can be analyzed by using the Na-
vier–Stokes equations [3,2]. A succinct summary of the known results relevant to the present work is provided below. For a
long channel with a height H and length L� H, the flow variables can be represented as perturbation series of the aspect
ratio
e :¼ H=L� 1: ð1Þ
The dimensionless parameters in the flow are the Reynolds number Re, the Mach number Ma and the Knudsen number Kn,
all defined by the outlet flow conditions:
Re ¼
�qout�uoutH

l
; Ma ¼

�uoutffiffiffiffiffiffiffiffiffi
cRT

p ; Kn ¼
ffiffiffiffiffiffi
pc
2

r
Ma
Re

; ð2Þ
where �qout and �uout are the averaged density and the averaged streamwise velocity at the outlet, l is the dynamic viscosity, c
is the heat capacity ratio, and R and T are the gas constant and temperature. The equation of state for an ideal gas, p ¼ qRT , is
also used in the analysis. It is assumed that Ma ¼ OðeaÞ and Re ¼ OðeÞ for 0 < a 6 1, thus Kn ¼ Oð�1�aÞ.

The boundary conditions are: at the walls, the spanwise velocity v vanishes and the streamwise velocity u is given by a
first-order slip velocity model [32]:
ujwall ¼ rKnH@yujwall; r :¼ ð2� rvÞ=rv; ð3Þ
where rv 2 ð0;1� is the tangential momentum accommodation coefficient, which is assumed to be 1 in the present study. The
averaged pressures at the inlet and outlet are �pin and �pout. With these boundary conditions, the time-independent solutions of
the Navier–Stokes equations in the leading orders of e are:
~pð~xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6rKnÞ2 þ ð1þ 12rKnÞ~xþ #pð#p þ 12rKnÞð1� ~xÞ

q
� 6rKn; ð4aÞ

~uð~x; ~yÞ ¼ � eRe

8cMa2
~p0 1� 4~y2 þ 4rKn

~p

� �
; ð4bÞ

~vð~x; ~yÞ ¼ e2Re

8cMa2

1
~p

1
2
ð~p2Þ00 1� 4

3
~y2

� �
þ 4rKn~p00

� �
~y; ð4cÞ
where #p ¼ �pin=�pout ¼ �qin=�qout > 1, ~p0 :¼ d~p=d~x, ~p00 :¼ d2~p=d~x2, ð~p2Þ00 :¼ d2ð~p2Þ=d~x2; and ~p :¼ p=pout, ~u :¼ u=�uout and ~v :¼ v=�uout

are normalized quantities, and ~x :¼ x=L 2 ½0;1� and ~y :¼ y=H 2 ½�1=2;þ1=2�. Based on Eq. (4a), it is understood that ~p ¼ Oð1Þ,
~u ¼ OðeÞ, ~v ¼ Oðe2Þ and that the dynamic viscosity l ¼ qm is a constant in the system [3].

Assuming q ¼ �qout and integrating qout~uð~x; ~yÞ at the outlet (~x ¼ 1) along the y direction, we obtain the total mass-flow
rate:
_m ¼ H3p2
out

24lLRT
ð#p � 1Þð1þ #p þ 12rKnÞ: ð5Þ
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If Kn ¼ 0, _m reduces to _mNS for the no-slip Navier–Stokes flow,
_mNS :¼ H3p2
out

24lLRT
ð#p � 1Þð1þ #pÞ;
and Eq. (5) can be rewritten as
_m
_mNS
¼ 1þ 12rKn

1þ #p
P 1: ð6Þ
Clearly, the mass-flow rate _m is enhanced in the slip flow.
The solutions given in Eqs. (4) can differ significantly from the no-slip Navier–Stokes solutions when Kn > 0. In addition

to a constant slip component in the streamwise velocity u in proportion to Kn, the spanwise velocity v is non-zero. Also, the
pressure along the channel center deviates from the linear distribution typical for the incompressible channel flow. These
distinctive features of slip flows in a long microchannel have been verified experimentally and validated numerically
[3,2]. The solutions only include first-order corrections in Kn, therefore they are not accurate for flows beyond the slip flow
regime, for which more sophisticated models or Boltzmann equation have to be used [2].

3. Lattice Boltzmann equation with multiple relaxation times

The lattice Boltzmann equation (LBE) is a simple explicit algorithm, which can be derived from the linearized Boltzmann
equation, and is often associated with a square or cubic lattice, rj 2 ZD, on which the discretized single particle distribution
function fiðrj; tnÞ :¼ f ðrj; ci; tnÞ evolves. The particle velocity space n is discretized into a symmetric discrete velocity set
fcig ¼ �fcig so that in discrete time tn :¼ dtN0 ¼ dtf0;1;2; . . .g, fictitious particles represented by ffig move synchronously
from one grid point rj to one of its neighbors rj þ cidt according to their discrete velocities. In the most general form, the
lattice Boltzmann equation can be written as the following:
fðrj þ cdt; t þ dtÞ ¼ fðrj; tÞ þX½fðrj; tÞ� þ Fðrj; tÞ; ð7Þ
where X is the collision term and F is the external forcing, and the bold-face symbols denote (Q+1)-tuple vectors for a model
of (Q+1) discrete velocities, e.g.
fðrj þ cdt; tn þ dtÞ ¼ ðf0ðrj; tn þ dtÞ; . . . ; fQ ðrj þ cQ dt ; tn þ dtÞÞT;
where T denotes the transpose operator, and the components of F are given by:
Fi ¼ wiq
ci � a

c2
s

dt ; ð8Þ
where, q is the mass density, a is the acceleration due to an external force, and the values of the speed of sound cs and the
coefficients fwig depend on the discrete velocity set fcig.

The collision operator in the LBE method is modeled by a linear relaxation process with multiple relaxation parameters,
which is carried out in the moment space as first proposed by d’Humières [27]:
X ¼ �M�1 � S � ½m�mðeqÞ�; m ¼ M � f; f ¼ M�1 �m; ð9Þ
where m and mðeqÞ are moments and their equilibria, respectively, S is a positive-definite diagonal matrix of relaxation rates
fsiji ¼ 1;2; . . . ;Q þ 1g:
S ¼ diagðs1; s2; . . . ; sQþ1Þ; si 2 ð0;2Þ;
and M is the transformation matrix mapping the distribution functions to their moments,
m ¼ M � f; f ¼ M�1 �m:
In the present work, we will use the 9-velocity model on a square lattice in two dimensions (the D2Q9 model). The discrete
velocity set fciji ¼ 0;1; . . . ;8g includes c0 ¼ ð0;0Þ, c1 ¼ ð1;0Þc ¼ �c3, c2 ¼ ð0;1Þc ¼ �c4, c5 ¼ ð1;1Þc ¼ �c7, and c6 ¼
ð�1;1Þc ¼ �c8, where c :¼ dx=dt . The values of the weight coefficients wi are: w0 ¼ 4=9, w1;2;3;4 ¼ 1=9, and w5;6;7;8 ¼ 1=36.
The equilibria of the moments are
mðeqÞ
1 ¼ q; mðeqÞ

2 ¼ qð3u � u� 2Þ; mðeqÞ
3 ¼ qð1� 3u � uÞ; ð10aÞ

mðeqÞ
4;6 ¼ qðu; vÞ ¼ �mðeqÞ

5;7 ; mðeqÞ
5;7 ¼ �qðu; vÞ; ð10bÞ

mðeqÞ
8 ¼ qðu2 � v2Þ; mðeqÞ

9 ¼ quv; ð10cÞ
where q is the density, and j :¼ qu :¼ qðu; vÞ is the flow momentum, and they are the conserved moments of the distribution
functions for athermal fluids:
q ¼
X

i

fi; j ¼
X

i

cifi ¼ qu: ð11Þ
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It can be shown that in this model, the kinematic viscosity m and the bulk viscosity f are given by:
m ¼ 1
3

1
sm
� 1

2

� �
cdx; ð12aÞ

f ¼ 1
6

1
se
� 1

2

� �
cdx; ð12bÞ
where sm ¼ s8 ¼ s9 is the relaxation rate for the moments related to the stresses, and sq ¼ s2 is the relaxation rate for the mo-
ment related to the energy; and the speed of sound is given by
cs ¼
1ffiffiffi
3
p c: ð13Þ
This MRT-LBE model reduces to the lattice BGK model [22,21] if si ¼ 1=s 8i. The matrix M and further details of this LBE mod-
el can be found in the paper by Lallemand and Luo [29].

4. Analytic solution of LBE for the incompressible Poiseuille flow

It is instructive to show the analytic solutions of the LBE given by Eq. (7) for the incompressible Poiseuille flow in 2D. The
setup is the following. The channel height is H in the spanwise direction y with Ny grid points, i.e., j ¼ 1, 2, . . ., Ny. A constant
body force is applied in the x direction on all fluid nodes. Since we use periodic boundary conditions in the streamwise direc-
tion, the channel length L is an irrelevant parameter for the time being. Two horizontal solid walls are placed somewhere
below j ¼ 1 and above j ¼ Ny. The precise wall locations will be determined analytically, as we shall demonstrate next. Be-
cause the nonlinear advection term u � $u vanishes for the incompressible Poiseuille flow, therefore the nonlinear terms (in u)
in mðeqÞ

i of Eq. (10c) can be neglected. In addition, we assume q is a constant. Then a steady state solution can be obtained
[33]:
quðjÞ ¼ 4
N2

y

j� 1
2

� �
Ny þ

1
2
� j

� �
qUmax �

1
2
qGdt þ qUs; j 2 f1;2; . . . ;Nyg; ð14Þ
where Umax ¼ GH2=8m is the maximum streamwise velocity, G :¼ j$pj=q is the acceleration due to a constant pressure gra-
dient, and the term Us is a constant ‘‘slip velocity” which shall discussed in detail later. The term Gdt=2 suggests that u should
be measured after adding Gdt=2 [34]. This is also consistent with the second-order Chapman–Enskog analysis [28]. Eq. (14)
clearly indicates that the channel width ıH is Nydx and the boundary conditions must be satisfied at j ¼ 1=2 and j ¼ Ny þ 1=2.
Only when the desired boundary conditions are satisfied exactly at j ¼ 1=2 and j ¼ Ny þ 1=2, we will have H ¼ Nydx. Eq. (14)
can be written in a dimensionless form,
~uð~yÞ ¼ 4~yð1� ~yÞ þ ~Us; ð15Þ
where ~u :¼ ðuþ Gdt=2Þ=Umax, ~Us :¼ Us=Umax, and ~y :¼ ðj� 1=2Þ=Ny. We will next analyze Us, which depends on the boundary
conditions at solid walls and the relaxation rates fsig.

4.1. Bounce-back boundary conditions

The bounce-back boundary conditions mimic the particle-wall interaction that, when a particle collides with a solid wall,
its momentum is reversed. Therefore, the bounce-back boundary conditions at a node next to a solid boundary are:
fiðtnþ1Þ ¼ f ��ı ðtnÞ; ð16Þ
where c�ı :¼ �ci is a velocity pointing to the solid boundary, and f ��ı denotes a post-collision distribution function. Therefore,
adjacent to the channel walls at j ¼ 1 and j ¼ Ny, we have, respectively:
f2;5;6ðj ¼ 1; tnþ1Þ ¼ f �4;7;8ðj ¼ 1; tnÞ; ð17aÞ
f4;7;8ðj ¼ Ny; tnþ1Þ ¼ f �2;5;6ðj ¼ Ny; tnÞ: ð17bÞ
With the bounce-back boundary conditions, we find
UB
s ¼

1
4

8
sq
� 8� sm

2� sm

� �
Gdt; ð18Þ
where sm is the relaxation rate for the stresses, which determines the shear viscosity m given by Eq. (12a), and sq ¼ s5 ¼ s7 is
the relaxation rate for the moments related to the energy fluxes.

Therefore, UB
s vanishes if and only if sq and sm satisfy the following relationship:
sq ¼
8ð2� smÞ
ð8� smÞ

; ð19Þ
which was first reported by Ginzburg and Adler [28].
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Some clarifications are in order concerning the closure relationship (19). First, it is important to note that the relationship
(19) of sqðsmÞ to satisfy the Dirichlet boundary condition UB

s ¼ 0 at the location dx=2 beyond the last fluid nodes adjacent to a
boundary is valid only when the boundary is parallel to the lattice axis. If the boundary is parallel to the diagonals, a similar
closed relationship between sqðsmÞ can be obtained [28]:
sq ¼
4ð2� smÞ
ð4þ smÞ

: ð20Þ
It should be stressed that the reason for the closed relationship sq ¼ sqðsmÞ to exist is that the exact analytic solution of the
lattice Boltzmann equation exists for the incompressible Poiseuille flow with the boundaries along a lattice line or a diagonal
line [28].

However, when the angle between a straight boundary and a lattice axis is arbitrary between 0 and p=4, then the analytic
solution for the Poiseuille flow does not exist for the LBE with bounce-back boundary conditions [28,30], hence no closed
relationship of sqðsmÞ can satisfy the imposed Dirichlet boundary conditions exactly. In other words, the bounce-back bound-
ary conditions are inadequate to attain the Dirichlet boundary conditions precisely at a specified location [35]. In this case,
one must use interpolations at boundaries [31,36] or the multi-reflection (MR) boundary conditions involving distribution
functions at multiple locations near the boundary [23,30]. With the multi-reflection boundary conditions [23,30], both
MRT and LBGK models admit the analytic solution for the Stokes-Poiseuille flow, in which the nonlinear terms of equilibria
in terms of u have been neglected, with its boundaries arbitrarily oriented with respect to the underlying lattice. It should be
stressed that multiple relaxation times are required for the LBE to admit the analytic solution for the Stokes-Poiseuille flow
with the bounce-back boundary conditions in the cases where the boundaries are either aligned with a lattice line or a diag-
onal line [23].

Secondly, in order to obtain Eq. (19), one must assume a constant pressure gradient $p along the channel provided that
the constant $p is modeled correctly [30]. In addition, one must also use the incompressible approximation of the LBE model
[37] in which a constant density q0 instead of a variable q is used to compute the velocity u, i.e., u ¼

P
icifi=q0, and the non-

linear terms in the equilibria of Eq. (10c). All the analytic results discussed in this section are obtained with the incompress-
ible approximation.

Finally, we must emphasize the relevance of the analytic solution for the incompressible Poiseuille flow to the compressible
pressure-driven microchannel flow. However, regardless of the physical nature of the flow (compressible vs. incompress-
ible), hydrodynamic boundary conditions must be realized accurately. In particular, the analytic solution illustrates that
the fluid–solid boundary conditions are viscosity-dependent for the LBGK model with bounce-back boundary conditions,
which is unphysical. The solution of the incompressible Poiseuille flow is the dominant leading-order solution for the com-
pressible pressure-driven microchannel flow in terms of the small parameter e :¼ H=L, as indicated by Eq. (4a). In Section 4.5
we will show unequivocally that it is impossible for the lattice BGK model with the bounce-back boundary conditions to accu-
rately realize the viscosity-independent Dirichlet boundary conditions for the incompressible Poiseuille flow [28,30], and the
MRT-LBE model must be used if one wishes to use the bounce-back scheme or any of its variations, which involve strictly
local information on a grid. For compressible flows, consistent inlet and outlet boundary conditions are crucial, and this will
be discussed in Section 5.

4.2. Diffusive boundary conditions

The diffusive boundary conditions for the LBE can be directly derived from its continuous counterpart in kinetic theory,
i.e., Maxwell’s boundary conditions [38,39], and are given by:
fi ¼
P

ck
jck � n̂jf �kP

ck
jck � n̂jf ðeqÞ

k ðqw;uwÞ
f ðeqÞ
�ı ðqw;uwÞ :¼ f D

i ; ck � n̂ < 0; ð21Þ
where n̂ is the unit vector out normal to the wall, ck’s are incidental velocities defined by ck � n̂ < 0, and qw and uw are density
and velocity at the wall, respectively. The distributions f �k in Eq. (21) are the post-collision values. Also, the same qw and uw

are used in the equilibria f ðeqÞ
k and f ðeqÞ

�ı in Eq. (21), hence the ratio f ðeqÞ
k =

P
kjck � n̂jf ðeqÞ

k is a constant independent of qw and uw

for a flat wall parallel to a lattice line or diagonal. Therefore, at the lower wall for instance, we have
f2ðtnþ1Þ ¼ 4f 5ðtnþ1Þ ¼ 4f 6ðtnþ1Þ ¼
2
3
½f �4 ðtnÞ þ f �7 ðtnÞ þ f �8 ðtnÞ�: ð22Þ
Then the velocity at the boundary Us is given by:
UD
s ¼ UB

s þ
3
2

NyGdt ¼ UB
s þ

3
2

HG
c
; ð23Þ
where c :¼ dx=dt .
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4.3. Diffusive bounce-back boundary conditions

If we combine the diffusive and the bounce-back boundary conditions:
fiðtnþ1Þ ¼ bf ��ı ðtnÞ þ ð1� bÞf D
i ðtnÞ; b 2 ½0;1�; ð24Þ
where f D
i ðtnÞ is given by Eq. (21), then the boundary velocity becomes:
UBD
s ¼ UB

s þ
3
2
ð1� bÞ
ð1þ bÞNyGdt ¼ UB

s þ
3
2
ð1� bÞ
ð1þ bÞ

HG
c
: ð25Þ
With b ¼ 0 or 1, the above formula reduces to Eq. (23) or Eq. (18), respectively, corresponding to the pure diffusive or
bounce-back boundary conditions.

4.4. Specular reflective bounce-back boundary conditions

For a particle colliding with a solid wall, the specular reflective boundary conditions reverse its momentum perpendicular
to the wall, and maintain its momentum tangential to the wall. The combination of specular reflective and the bounce-back
boundary conditions is implemented as the following:
f5;6ðj ¼ 1; tnþ1Þ ¼ bf �7;8ðj ¼ 1; tnÞ þ ð1� bÞf �8;7ðj ¼ 1; tnÞ: ð26Þ
With the above boundary conditions, the boundary velocity is
UBR
s ¼ UB

s þ
3
2
ð1� bÞ

b
NyGdt ¼ UB

s þ
3
2
ð1� bÞ

b
HG
c
: ð27Þ
4.5. Defects in the lattice BGK models with the bounce-back boundary conditions

For the lattice BGK equation, there is only one relaxation rate: si ¼ 1=s. Therefore, with the bounce-back boundary con-
ditions, the boundary velocity of Eq. (18) becomes:
UBGK
s ¼ ð16s2 � 16sþ 1Þ

4ð2s� 1Þ Gdt ¼
48m2 � 1

8m
Gdt ; ð28Þ
where m ¼ ðs� 1=2Þ=3 is the dimensionless viscosity, normalized by dx ¼ dt ¼ 1. Therefore, for the lattice BGK equation with
the bounce-back boundary conditions, UBGK

s does not vanish unless m2 ¼ 1=48. The results of Us for the diffusive, the diffusive
bounce-back, and the reflective bounce-back boundary conditions remain the same, with UB

s replaced by UBGK
s . The results

also hold for the lattice BGK models in 3D.
For the 2D channel flow with a constant pressure gradient, the total mass-flow rate for the LBGK models with the diffusive

bounce-back boundary conditions can be deduced from Eq. (14):
_mBGK

_m0
¼ 1þ 8

A2 Kn2 þ 1
A

6
ð1� bÞ
ð1þ bÞ �

10
Ny

� �
Kn� 3

ð1� bÞ
ð1þ bÞ

1
Ny

� �
dt þ

ðdt þ 3Þ
2N2

y

; ð29Þ
where _m0 :¼ 2qUmaxNy=3 and Kn ¼ As=Ny with a parameter A > 0 is assumed [6,7,20]. The above result is obtained by sum-
ming Eq. (14) over j with Us given by Eq. (25). A similar result can be obtained by assuming Kn ¼ Bm=Ny, where B > 0 is a
parameter [5,8,9,11,12,10,13–19]. Thus, with two adjustable parameters, s and Ny, in addition to A (or B), the above formula
is used to fit the flow rate with the Knudsen minimum, and the asymptotic behaviors in both Kn ¼ 0 and Kn!1 [15,17,18].
It must be noted once again that the flow rate _mBGK given above is grid-resolution dependent, that is, the resolution Ny is used
as a tuning parameter in the simulation. The above result summarizes the essence of the majority, if not all, of the previous
results of the LBGK models with the bounce-back boundary boundary conditions for microflows [5–20].

The above result of Us given by Eq. (28) has an important consequence – it clearly demonstrates the deficiency of the
LBGK model with the bounce-back boundary conditions to predict the flow in microchannel by using Us as the ‘‘slip velocity”
[25]. First and foremost, the LBGK model with the bounce-back scheme of this kind cannot resolve the Knudsen layer, regard-
less how fine the grid is. Furthermore, the ‘‘slip velocity” Us at the wall depends on the grid number Ny [40,33], regardless
where the wall locations are set. The above result clearly indicates that: (a) the velocity Us is a numerical artifact of the LBGK
model with the bounce-back boundary conditions, rather than a physical effect, because of its dependence on the grid-res-
olution Ny; (b) when the wall location is fixed, the ‘‘slip velocity” Us exists in general even if the no-slip bounce-back bound-
ary conditions are used; and (c) the so-called ‘‘slip velocity” Us is viscosity-dependent as a consequence of the viscosity-
dependence of the bounce-back type boundary conditions with the LBGK models, which is unphysical. By manipulating
the bounce-back scheme, one can set Us ¼ 0 or eliminate the term related to Ny in Eq. (28) with a fixed value of s. However,
one cannot eliminate m-dependence in Us in LBGK models with bounce-back boundary conditions for arbitrary value of s
[33].
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Clearly, the approach using the LBGK model with the bounce-back boundary conditions described above cannot possibly
yield correct flow fields in the microchannel. And no comprehensive study has been carried out to compare the LBE with
more matured techniques such as DSMC for micro-flow simulations. Only recently a study has shown that, when compared
with the DSMC results, the lattice BGK results for the microchannel flow is qualitatively incorrect when Kn P 0:2 [26]. To
overcome these shortcomings in the LBGK equation, we have to use the collision model with multiple relaxation times
(MRT) [27–29], as we will show in what follows.

5. Boundary conditions in LBE simulations

Correct boundary conditions are crucially important in the LBE simulations of microchannel flows. Two types of boundary
conditions must be dealt with: (a) the boundary conditions at the walls and (b) pressure boundary conditions at the inlet and
the outlet. In our simulations, the system size is ðNx þ 2Þ � ðNy þ 2Þ, i.e., i ¼ 0, 1, . . ., Nx, Nx þ 1, and j ¼ 0, 1, . . ., Ny, Ny þ 1. The
fluid nodes are 1 6 i 6 Nx and 1 6 j 6 Ny. The extra nodes beyond the fluid region are used to store data before advection.

We use the diffusive bounce-back boundary conditions of Eq. (24) at the wall, in which the probability b has to be deter-
mined. We can rewrite u and v in dimensional form:
uð~x; ~yÞ ¼ Umax ð1� 4~y2Þ þ 4
Kn
~p

� �
; ð30aÞ

vð~x; ~yÞ ¼ Vmax 1� 4
3

~y2
� �

þ 4Kn
2~p00

ð~p2Þ00
� �

~y; ð30bÞ
where Umax ¼ H2jp0j=8l, Vmax ¼ H3ðp2Þ00=16lp, and we assume r ¼ 1. The ~x-dependence of u and v is through p and its deriv-
atives. Then, combining Eqs. (30a) and (25), the first-order slip velocity is:
Us ¼ 4
Kn
~p

Umax ¼
Kn
~p
jrpjH2

2qm
¼ 3

2
ð1� bÞ
ð1þ bÞ

jrpj
q

H
c
; ð31Þ
where Eq. (25) with UB
s ¼ 0 and H ¼ Nydx and c :¼ dx=dt has been used. This leads to
b ¼ 3l� KnHc�qout

3lþ KnHc�qout
: ð32Þ
It is clear that b is a constant because l is a constant for the first-order slip model [3].
The inlet and the outlet pressure boundary conditions are crucial for the simulations. The constant pressure boundary

conditions would not work here because the inlet and outlet pressure conditions must be consistent with the flow field in-
side the channel. We use extrapolated boundary conditions at both ends of the channel. At the inlet (i ¼ 0) and the outlet
(i ¼ Nx þ 1) ghost nodes, the unknown distribution functions, which will advect from boundaries into the channel, are com-
puted from interior fluid nodes along the streamwise direction before advection according to the following extrapolation
formulas:
fkð0; jÞ ¼ 2f kð1; jÞ � fkð2; jÞ; k ¼ f1;5;8g; ð33aÞ
fkðNx þ 1; jÞ ¼ 2f kðNx; jÞ � fkðNx � 1; jÞ; k ¼ f3;6;7g; ð33bÞ
where j 2 f1;2; . . . ;Nyg. After the extrapolation, the unknown distribution functions are propagated to adjacent fluid nodes.
The densities at both the inlet (i ¼ 1) and the outlet (i ¼ Nx) can be computed now. Then the densities at the inlet (i ¼ 1) and
outlet (i ¼ Nx) are renormalized along the spanwise direction (y) so that their averaged values are equal to �qin and �qout stip-
ulated by the pressure boundary conditions, respectively. The renormalized values of qinðjÞ and qoutðjÞ are used in the equi-
libria to carry out the ensuing collision step. This procedure ensures that on average the pressure boundary conditions are
satisfied, and more importantly, the pressure profiles at both the inlet and the outlet, which are not constant along spanwise
direction, are consist with flow field inside the channel. We also note that the pressure boundary conditions used here do not
lead to observable ‘‘boundary layers” at the boundaries.

6. Numerical results

In what follows, we will demonstrate that the lattice Boltzmann equation with the MRT collision model can indeed sim-
ulate microchannel flow with finite Knudsen number effects. The boundary conditions described in the previous section are
used in the simulations. The values of the relaxation rates are: si ¼ sm ¼ 1=s for i–5 and 7, and s5 ¼ s7 ¼ sq, where sm is chosen
to keep l constant and sq is related to sm by Eq. (19).

6.1. Convergence study

To conduct a convergence study by varying grid size Nx � Ny, we must maintain constant Re, Ma and hence Kn. This imme-
diately means that the reference velocity �uout must be kept constant. It is therefore convenient to use the lattice units that
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dx ¼ dt ¼ 1. In this convention, the width of the channel H ¼ dxNy ¼ Ny becomes a variable. Consequently the shear viscosity
m also becomes a variable. It follows that the viscosity m can be given in terms of the local Knudsen number Kn=~p and Ny:
a

Fig. 1.
E2ðqÞ w
m ¼
ffiffiffiffiffiffi
2

3p

r
Kn
~p

Ny: ð34Þ
Therefore, with Kn fixed, the viscosity m ¼ ðs� 1=2Þ=3, and henceforth s, depend linearly on the mesh size Ny, which creates a
difficulty for the lattice BGK model with bounce-back boundary conditions, but not for the MRT-LBE. Obviously, the system
with constant Re, Ma, and Kn will not converge to the incompressible Navier–Stokes equation for which most LBE models are
intended in the limit of Ma! 0.

We conduct a convergence study with the following system: qin ¼ 1:01 and qout ¼ 1:0, e ¼ H=L ¼ 1=4, and compute rel-
ative errors of u, v and q with 4 different mesh sizes: Nx � Ny ¼ 16� 4, 32� 8, 64� 16, and 128� 32. Accordingly, l ¼ 1=16,
1/8, 1/4, and 1/2. The relative error is computed with L2-norm:
E2ðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j½udðrjÞ � uðrjÞ�2P

juðrjÞ2

vuut ; ð35Þ
where ud and u are the numerical and analytic (Eqs. (4a)) solutions, respectively. Fig. 1 shows the results of the convergence
study. The least-square fitted slopes of E2ðuÞ, E2ðvÞ and E2ðqÞ are 0.97, 1.07 and 1.13, respectively, indicating convergence to
Eq. (4a).

It is interesting to note that the second-order convergence of the LBE in space can be obtained through asymptotic anal-
ysis [41] in the following limit with diffusive scaling for incompressible flows [42,43]: dx ¼ d2

t 	 �2, Ma 	 �, and �! 0. How-
ever, we are dealing with compressible flows here. The limit we are taking is: dx ¼ dt 	 �, Ma ¼ constant, and �! 0. This may
explain the first-order convergence observed in Fig. 1. However, a definitive analysis for the convergence behavior of the
compressible LBE models remains to be investigated.

6.2. Microchannel flow in the slip flow regime

We now simulate flow through a long microchannel. The system size is Nx � Ny ¼ 1100� 11, thus e ¼ H=L ¼ 1=100. The
averaged outlet density is fixed at �qout ¼ 1:0.

We choose three values for the Knudsen number: Kn ¼ 0:0194, 0.194 and 0.388. The values for the averaged inlet density
are: �qin ¼ 1:4 for Kn ¼ 0:0194, and �qin ¼ 2:0 for Kn ¼ 0:194 and 0.388. We choose these particular values of �qout=�qin and Kn
so our results can be compared with those obtained by other methods [26,44]. We compute the velocities u and v, and the
deviation of the pressure from the linear profile of the no-slip incompressible Navier–Stokes solution:
dpð~xÞ ¼ 1
pout
ðp� pNSÞ; ð36Þ
where pNS is the linear pressure distribution along the channel center line.
Fig. 2 presents our results of the pressure deviation from the linear distribution along the centerline, the normalized

streamwise velocity u=Umax and the normalized normal velocity v=Vmax at the outlet. In all cases, the LBE results agree very
well with the results of the compressible Navier–Stokes equation with a slip velocity (Slip-NS), given by Eq. (4a). The largest
L2-normed differences of dp, u=Umax and v=Vmax between the LBE and the slip-NS results at Kn ¼ 0:388 are 4.0%, 1.5% and
15.0%, respectively. We note that Vmax 	 10�6 is four orders of magnitude smaller than Umax, and although ~v is accurately
captured by the LBE, its error is much larger than that of ~u. At Kn ¼ 0:0194, the flow is in the near continuum or the slip flow
regime. In this case, the LBE results agree well with the information-preservation DSMC (IP-DSMC) and the DSMC results of
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Shen et al. [26]. There is very little difference in the streamwise velocity at the outlet, but the maximum dp obtained by the
LBE is about 17% larger than that by IP-DSMC. The difference in maximum dp increases as Kn increases: at Kn ¼ 0:194 it is a
factor of about 1.5 and at Kn ¼ 0:388 a factor of about 2. The difference in u=Umax is relatively small when Kn ¼ 0:194, but
becomes larger near the wall when Kn ¼ 0:388. This is expected because the first-order slip velocity model used here is no
longer valid for this Knudsen number. For transitional flows, one must used more sophisticated models, which can include
either higher-order velocity derivatives [2] or more than one accommodation coefficient, such as Cercignani-Lampis model
[45]. We note that these more sophisticated models can be readily integrated in the present lattice Boltzmann model.
Fig. 3. Flow fields on ~x-~y plane, Kn ¼ 0:194. Left to right: Dp � 105, u=Umax and v=Vmax.
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Fig. 3 illustrates the two-dimensional nature of the flow. The flow fields on x-y plane with Kn ¼ 0:194 are shown as 3D
plots. The 2D effect in dp is a consequence of the non-zero normal velocity v, therefore it is of order of v, which is about five
orders of magnitude smaller than p. We therefore compute Dp :¼ ½dpð~x; ~yÞ � dpð~x;0Þ� and magnify Dp by a factor of 105 in the
figure. Clearly, the flow fields are all two-dimensional. We notice that Dp and u=Umax are similar in Fig. 3, due to the way Dp is
computed. The main feature of dp and u should be (and is) different: along the centerline, the former is concave, as shown in
Fig. 2, whereas the latter is convex, as shown in Fig. 3.

7. Conclusions

In this work we implement the athermal MRT-LBE with a first-order slip velocity model and demonstrate that the LBE
method can be used to simulate gaseous flow through a long microchannel in the slip flow regime. The LBE results agree
well with the slip Navier–Stokes, DSMC, and IP-DSMC results in the slip flow regime. While the LBE and slip Navier–Stokes
results agree well with each other in the transition-flow regime, they deviate significantly from the DSMC results, as
expected.

We would like to point out that the errors in the previous results obtained by using the LBGK model with the bounce-back
boundary conditions, as criticized by Shen et al. [26], are mainly due to two causes: the inaccuracy of the bounce-back
boundary conditions coupled with the LBGK model and the inconsistent pressure boundary conditions. We show that, for
the Poiseuille flow in a long microchannel with boundaries aligned with a lattice axis, certain defects of the LBGK model cou-
pled with the bounce-back boundary conditions can be overcome by the MRT-LBE model, and the pressure boundary con-
ditions consistent with the microchannel flow can be implemented in the LBE method. With the MRT-LBE model and
consistent boundary conditions, the MRT-LBE results converge to the compressible NS equations with slip velocity boundary
conditions.

The fundamental deficiency of the LBGK model is that, with only one parameter s, it has no freedom to adjust higher-or-
der discretization errors in bulk or due to boundary conditions, as explicitly shown by Ginzburg for the Brinkman flow [46].
The critics of the MRT-LBE method often insist that the LBGK model is simple and therefore efficient. This is not true. The
MRT-LBE models with only two relaxation times (TRT) [30,46] is just as efficient as the corresponding LBGK models with
an equal number of velocities, and the TRT-LBE models with the bounce-back boundary conditions can correctly realize
the Dirichlet boundary conditions for the Navier–Stokes flows, while the LBGK model with the bounce-back boundary con-
ditions cannot do so, as we have shown in this work.

The present work only deals with the Poiseuille flow with its boundaries aligned with a lattice axis. For flows with com-
plex boundary geometries, alternative boundary conditions that are more accurate than the bounce-back ones must be used
[31,36,23,24,30]. The effectiveness of these alternative boundary conditions applied to microflows has yet to be investigated
and these schemes deserve further study. In addition, to fully understand the effectiveness of the LBE models for gaseous
microflows, one needs to investigate higher-order terms in the Chapman–Enskog expansion [46] for the compressible LBE
models with significant density variations. These subjects shall be considered in our future studies.

Finally, we would like to point out that, with slip velocity models, such as Eq. (3) or other more sophisticated higher-order
models, the LBE model cannot resolve the Knudsen layer. Within the Knudsen layer, the viscosity is not a constant, to say the
least. To correctly model microchannel flow with large Kn, one needs to adequately model the effective mean free path as a
function of, e.g., the local Knudsen number, as shown by Guo et al. [44]. This and other issues will be left for future research.
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